Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The selective turnover of macromolecules by autophagy provides a critical homeostatic mechanism for recycling cellular constituents and for removing superfluous and damaged organelles, membranes, and proteins. To better understand how autophagy impacts seed maturation and nutrient storage, we studied maize (Zea mays) endosperm in its early and middle developmental stages via an integrated multiomic approach using mutants impacting the core macroautophagy factor AUTOPHAGY (ATG)-12 required for autophagosome assembly. Surprisingly, the mutant endosperm in these developmental windows accumulated normal amounts of starch and Zein storage proteins. However, the tissue acquired a substantially altered metabolome, especially for compounds related to oxidative stress and sulfur metabolism, including increases in cystine, dehydroascorbate, cys-glutathione disulfide, glucarate, and galactarate, and decreases in peroxide and the antioxidant glutathione. While changes in the associated transcriptome were mild, the proteome was strongly altered in the atg12 endosperm, especially for increased levels of mitochondrial proteins without a concomitant increase in mRNA abundances. Although fewer mitochondria were seen cytologically, a heightened number appeared dysfunctional based on the accumulation of dilated cristae, consistent with attenuated mitophagy. Collectively, our results confirm that macroautophagy plays a minor role in the accumulation of starch and storage proteins during maize endosperm development but likely helps protect against oxidative stress and clears unneeded/dysfunctional mitochondria during tissue maturation.more » « less
-
Abstract In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research. However, some of the methodologies are prone to misuse or misinterpretation, sometimes casting doubt on the reliability of the conclusions being drawn about plant autophagy. Here, we summarize the methods that are widely used for monitoring plant autophagy at the physiological, microscopic, and biochemical levels, including discussions of their advantages and limitations, to provide a guide for studying this important process.more » « less
-
Penfield, Steve (Ed.)Abstract Seed storage proteins (SSPs) are of great importance in plant science and agriculture, particularly in cereal crops, due to their nutritional value and their impact on food properties. During seed maturation, massive amounts of SSPs are synthesized and deposited either within protein bodies derived from the endoplasmic reticulum, or into specialized protein storage vacuoles (PSVs). The processing and trafficking of SSPs vary among plant species, tissues, and even developmental stages, as well as being influenced by SSP composition. The different trafficking routes, which affect the amount of SSPs that seeds accumulate and their composition and modifications, rely on a highly dynamic and functionally specialized endomembrane system. Although the general steps in SSP trafficking have been studied in various plants, including cereals, the detailed underlying molecular and regulatory mechanisms are still elusive. In this review, we discuss the main endomembrane routes involved in SSP trafficking to the PSV in Arabidopsis and other eudicots, and compare and contrast the SSP trafficking pathways in major cereal crops, particularly in rice and maize. In addition, we explore the challenges and strategies for analyzing the endomembrane system in cereal crops.more » « less
An official website of the United States government
